Section 4 – 4: Graphing a Line Given its Equation

There are three different kinds of line graphs possible and each of the three different type of graphs corresponds to one of three different types of line equations.

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equations of the form $y = a \text{ constant}$</td>
<td>Equations of the form $x = a \text{ constant}$</td>
<td>Equations of the form $y = mx \pm b$</td>
</tr>
<tr>
<td>like $y = 2$</td>
<td>like $x = 4$</td>
<td>like $y = 3x - 1$ or $y = -2x + 1$</td>
</tr>
<tr>
<td>have a zero slope</td>
<td>have an undefined slope</td>
<td>have a slope m that is a non zero number</td>
</tr>
<tr>
<td>and are graphed as a horizontal line through the y axis at 2</td>
<td>and are graphed as a vertical line through the x axis at 4</td>
<td>They are graphed as a line with a slope of m through the x and y axis</td>
</tr>
</tbody>
</table>

$y = 2$

$y = 4$

$y = 3x - 1$ or $y = -2x + 1$

or $y = -2x + 1$
To Graph a Line given it’s Equation

\[y = \text{constant} \]

Case 1: If the equation is of the form \(y = y_1 \) (where \(y_1 \) is the constant)

Graph a horizontal line crossing the y axis at \(y_1 \) (the constant)

Example 1
Graph \(y = -3 \)

\(y = -3 \)
is graphed as a horizontal line through the y axis at \(-3\)

Example 2
Graph \(y = 4 \)

\(y = 4 \)
is graphed as a horizontal line through the y axis at \(4\)
To Graph a Line given it’s Equation

\[x = \text{constant} \]

Case 2: If the equation is of the form \(x = x_1 \) (where \(x_1 \) is the constant)

Graph a vertical line crossing the x axis at \(x_1 \) (the constant)

Example 1

Graph \(x = 2 \)

\(x = 2 \) is graphed as a vertical line through the x axis at 2

Example 2

Graph \(x = -4 \)

\(x = -4 \) is graphed as a vertical line through the x axis at -4
To Graph a Line given it’s Equation

\[y = mx + b \]

Case 3: If the equation has \(x \) and \(y \) variables and can be written in the form \(y = mx \pm b \)

Step 1. Put the equation into the form \(y = mx \pm b \) Note the signs of \(m \) and \(b \).

Step 2. List the slope \(m \) and the y intercept \(b \)

Step 3. **Plot a point** on the graph on the y axis at \(b \).

Step 4. To get a second point, **start at the y intercept** and move in the \(x \) and \(y \) directions based on the slope.

Step 5. Draw a line through the two points.

Example 1. Graph \(y = \frac{3}{2}x - 1 \)

Step 2. The slope is \(m = \frac{3}{2} \) up \(\frac{3}{2} \) right 2 and the y intercept \(b \) is \(-1 \)

Step 3. Plot \((0, -1) \)

Step 4. go right 2 up 3 and plot a point

Step 5. Draw the line graph through the 2 points
Example 2. Graph \(y = \frac{-5}{3}x + 2 \)

Step 2. The slope is \(m = \frac{-5}{3} \) down 5 right 3 and the y intercept \(b \) is 2

Step 3. Plot (0, 2)

Step 4. Go right 3 down 5 and plot a point

Step 5. Draw the line graph through the 2 points
Example 3. Graph \(5x - 2y = 0 \)

Step 1. Solve for \(y \):

\[
5x + 2y = 0 \\
-5x - 5x
\]

\[
2y = -5x
\]

\[
\frac{2y}{2} = \frac{-5x}{2}
\]

\[
y = \frac{-5}{2}x
\]

Step 2. The slope is \(m = \frac{5}{2} \) up 5 right 2 and the \(y \) intercept \(b \) is 0.

Step 3. Plot \((0, 0)\)

Step 4. go right 2 up 5 and plot a point

Step 5. Draw the line graph through the 2 points
Example 4. Graph $4x - 3y = -6$

Step 1. Solve for y:

$4x - 3y = 6$

$-4x -4x$

$-3y = -4x + 6$

$rac{-3y}{-3} = rac{-4x + 6}{-3}$

$y = \frac{4}{3}x - 2$

Step 2. The slope is $m = \frac{4}{3}$ up 4 right 3 and the y intercept b is -2

Step 3. Plot $(0, -2)$

Step 4. go right 3 up 4 and plot a point

Step 5. Draw the line graph through the 2 points.